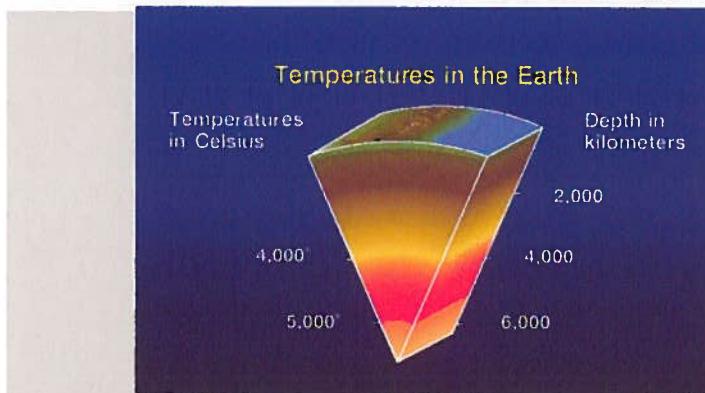
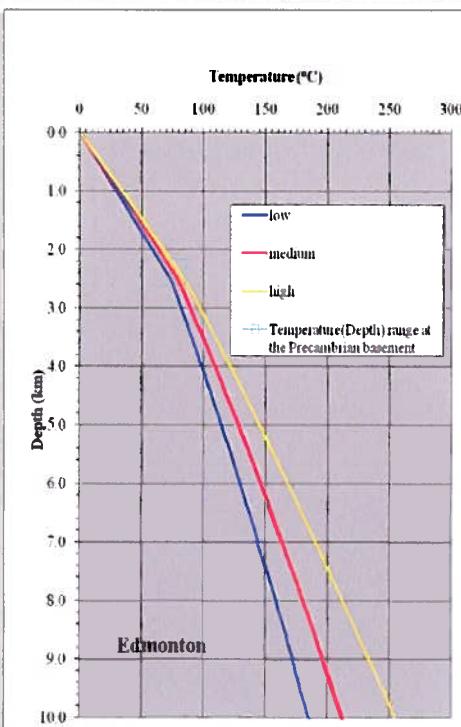


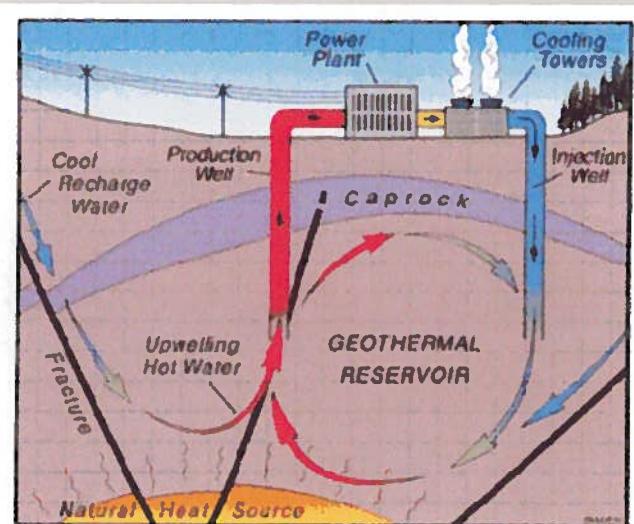
GEOTHERMAL ENERGY DEVELOPMENT IN ALBERTA


PRESENTED BY
JONATHAN BANKS, PH.D.

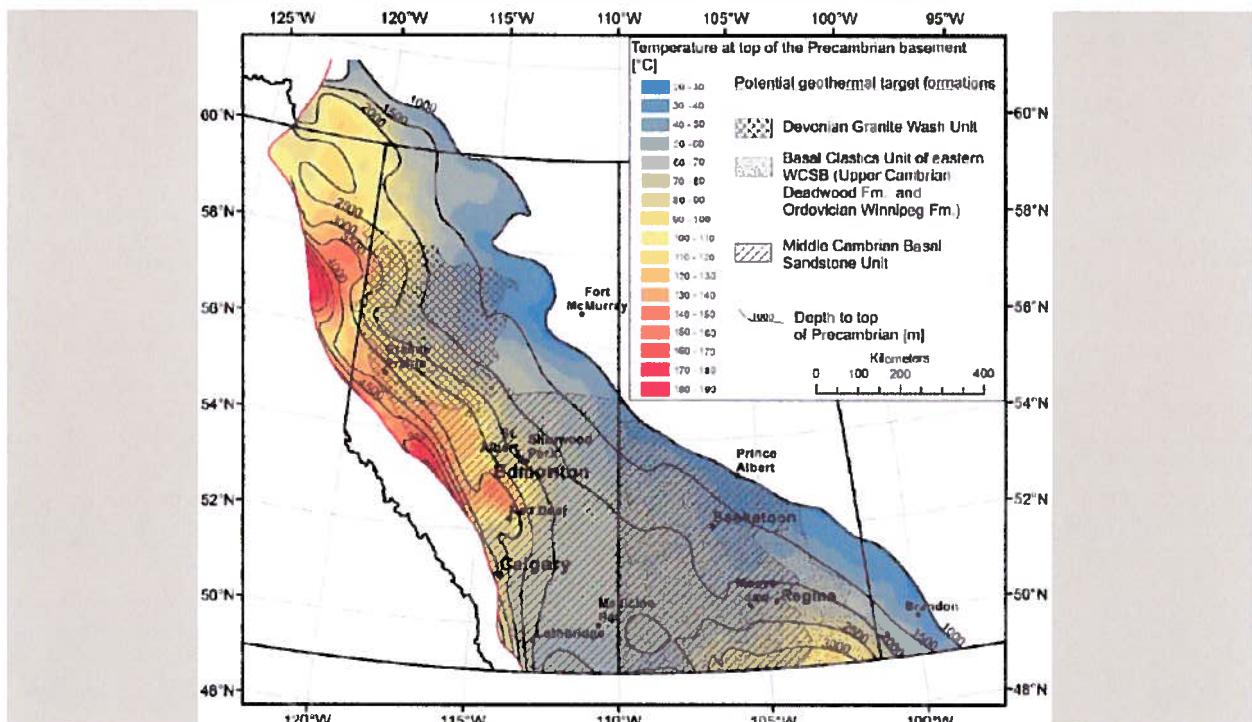
WITH SUPPORT FROM
THE UNIVERSITY OF ALBERTA
AND
ALBERTA INNOVATES - ENERGY AND ENVIRONMENT
SOLUTIONS


OVERVIEW

- What is geothermal energy and how is it produced?
- Stages of geothermal energy development
- Geothermal resources in Alberta
- Our Proposal
- Long-term outlook and development strategy
- Discussion


WHAT IS GEOTHERMAL ENERGY?

- Geothermal energy' refers to the Earth's internal heat content
- 99% of Earth is hotter than 1000 ° C
- Depth at centre is ~ 6700° C (surface of the Sun is 5000 ° C)
- Geothermal gradient is rate at which temperature increases with depth
- Average in Western Canada 20 - 50° C per km



HOW IS GEOTHERMAL ENERGY PRODUCED?

- Hot water is pumped to the surface in one or more 'production' wells
- Thermal energy is extracted from the water and used directly as heat or converted to electricity
- Cold water is pumped back into the reservoir in an 'injection' well
- 1 production well may produce 20 - 100 MW of thermal energy (2 - 10 MW of electricity)

ALBERTA'S GEOTHERMAL REGIME AT THE PRECAMBRIAN SURFACE

ALBERTA'S GEOTHERMAL ELECTRICITY RESERVOIRS

Reservoir	Municipality	Temp	Depth
Lower Mannville	Yellowhead	110 – 130 °C	< 4000 m
Banff Formation	Yellowhead	120 – 150 °C	< 4500 m
Wabamum Group	Grande Prairie	100 – 120 °C	< 3500 m
Nisku Formation	Yellowhead	110 – 130 °C	< 4000 m
Leduc Formation	Grande Prairie	110 – 130 °C	< 3750 m
Swan Hills / Slave Point	Yellowhead	120 – 140 °C	< 5000 m
Granite Wash	Grande Prairie	120 – 140 °C	< 4500 m
Basal Sandstone	Yellowhead	160 – 180 °C	< 5500 m
Basal Sandstone	Clearwater (West)	110 – 130 °C	< 4000 m
Basal Sandstone	Clearwater (East)	110 – 120 °C	< 4000 m

ALBERTA'S GEOTHERMAL ELECTRICITY RESERVOIRS

Reservoir	Municipality	Temp	Depth
Lower Mannville	Yellowhead	110 - 130 °C	< 4000 m
Banff Formation	Yellowhead	120 - 150 °C	< 4500 m
Wabamum Group	Grande Prairie	100 - 120 °C	< 3500 m
Nisku Formation	Yellowhead	110 - 130 °C	< 4000 m
Leduc Formation	Grande Prairie	110 - 130 °C	< 3750 m
Swan Hills / Slave Point	Yellowhead	120 - 140 °C	< 5000 m
Granite Wash	Grande Prairie	120 - 140 °C	< 4500 m
Basal Sandstone	Yellowhead	160 - 180 °C	< 5500 m
Basal Sandstone	Clearwater (West)	110 - 130 °C	< 4000 m
Basal Sandstone	Clearwater (East)	110 - 120 °C	< 4000 m

PROPOSED RESERVOIR MODELS

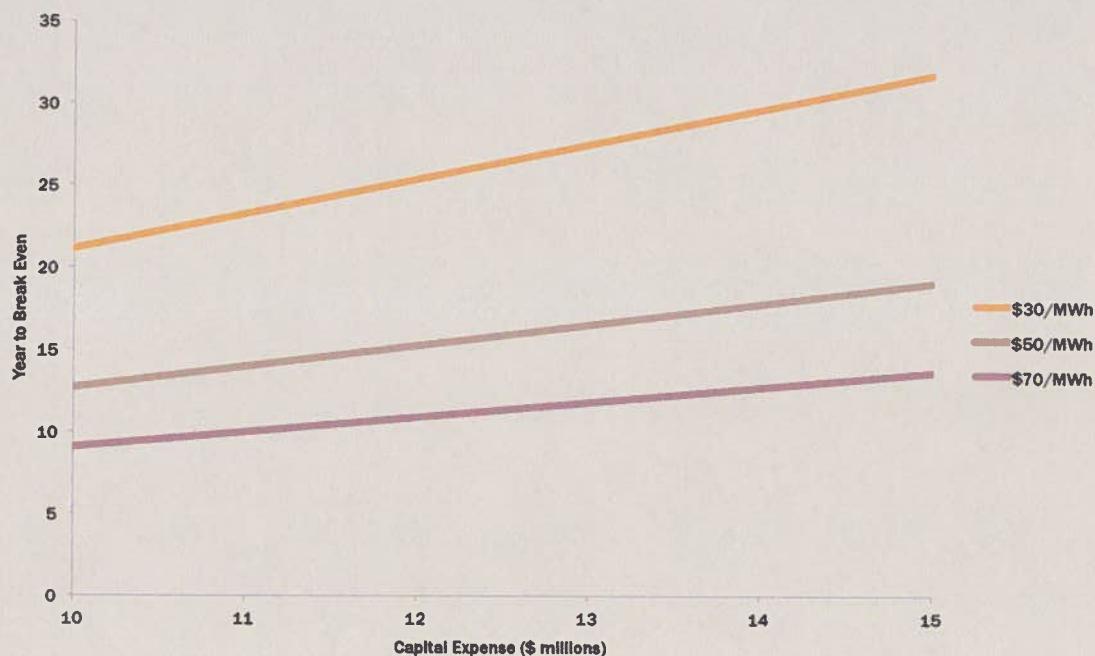
- A static geologic model, depicting the areal extent of the reservoir in the subsurface and the reservoir's boundary conditions temperature, depth, thickness and stress regime.
- A volumetric assessment of the total thermal energy in (joules or megawatt hours) available in each reservoir.
- A Monte Carlo, or other probabilistic simulation, to predict the amount of power (in megawatts) that may be produced from the reservoir.

VIABILITY MATRIX

Assesses non-geotechnical aspects of a projects viability

Completed for each of the three regions containing the reservoirs (Grande Prairie, Yellowhead County, Clearwater County)

- Environmental Issues
- Finances
- Market Factors
- First Nation Involvement
- Infrastructure (electrical and non-electrical)
- Community Issues


ESTIMATED PROJECT COSTS

Expense	Cost
Salaries & Benefits	\$80,000
Consulting Fees	\$15,000
Software	\$3,000
Travel	\$10,000
Overhead (20%)	\$21,600
TOTAL	\$129,600

POTENTIAL SUPPORT

- The Canadian Geothermal Development Corporation
- Peace Power
- IRAP-NRC
- Local Municipalities
- U of A Energy Management and Sustainable Operations

ECONOMICS OF 2 MW DEMONSTRATION PLANT

THE BIGGER PICTURE

At 100 °C, pore fluid has a heat capacity of

4.2 megajoules per m^3K

A 30 km x 20 km x 0.1 km reservoir with 8% porosity contains

4.8 billion m^3 of pore water

The total energy available from the pore fluid in this reservoir, if cooled to 50 °C is

1 trillion megajoules, or ~278,000 gigawatt hours

If 10% of this energy can be recovered, it could generate enough power to run Hinton for
nearly 1,650 years

THE BIGGER PICTURE

With current technology, there may be at least 10x this much geothermal energy available in Alberta

THANK YOU FOR YOUR CONSIDERATION

DISCUSSION